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The generalized coupled Korteweg-de Vries (GCKdV) equations as one case of the four-reduction
of the Kadomtsev-Petviashvili (KP) hierarchy are studied in details. The Painlevé properties of the
model are proved by using the standard Weiss-Tabor-Carnevale (WTC) method, invariant, and per-
turbative Painlevé approaches. The meaning of the negative index k = —2 is shown, which is indistin-
guishable from the index k = —1. Using the standard and nonstandard Painlevé truncation methods
and the Jacobi elliptic function expansion approach, some types of new exact solutions are obtained.
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1. Introduction

Physical systems are frequently characterized by
nonlinear differential equations. The integrability of a
nonlinear partial differential equation (PDE) is an in-
teresting topic in nonlinear science. The fact that the
Painlevé analysis arises as a solving method of many
nonlinear systems is known for quite some time [1]. As
is known, the Painlevé analysis developed by Weiss-
Tabor-Carnevale (WTC) [2] not only is one of the
most powerful methods to prove the integrability of a
model, but also can be used to find some exact solu-
tions [3]. Later, the WTC approach has been general-
ized by R. Conte [4], A. Pickering [5], and S. Y. Lou [6]
in some ways in order to find more exact and explicit
solutions of nonlinear PDEs.

A partial differential equation is said to possess
the Painlevé property, if the solutions of the PDE are
single-valued about the movable singularity manifold.
To be precise, if the singularity manifold is determined

by
f(z, ..., z0) =0, 1)

and u=u(z, ..., Z,) is a solution of the PDE, then we
assume that

u=f*Y ufk, (2)
k=0
where f = f(z, ..., z3) and w = w(z, ..., z)

(up # 0) are analytic functions of the variables z in a

neighborhood of the manifold (1), and « is an integer.
Substituting (2) into the PDE determines the value of o
and defines recursion relations for uy (k=0, 1, 2, ... ).
If the ansatz (2) is correct, the PDE is said to possess
the Painlevé property and is eventually conjectured to
be integrable.

Such an analysis first requires a choice of the expan-
sion family (or branch). This implies a selection of the
leading order exponent o and the leading order coef-
ficient up. For each family, there is a set of indices, or
resonances, which give the values of k for which arbi-
trary coefficients should be introduced into (2). Here
a maximal family is used to denote any family with a
number of indices equal to the order of the equation(s)
being considered, while a principal family is any fam-
ily with all the resonances of nonnegative integers, ex-
cept —1, which should occur once only. As is known,
the so-called standard Painlevé analysis [2] is suitable
only for a PDE which has a maximal principle expan-
sion family.

In case that there are not enough arbitrary coeffi-
cients, the Painlevé expansion (2) only represents a
particular or even singular solution. This may happen
for a number of reasons, a nonmaximal family, a non-
integer index, or a negative integer index distinct from
—1. In order to deal with such questions, the method
presented in this paper is a perturbative Painlevé anal-
ysis [7], which guarantees an arbitrary coefficient for
each index.

In this paper, we are devoted to study the Painlevé
property for the generalized coupled Korteweg-de
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Vries (GCKdV) equations. It is organized as follows.
In Section 2, we explore the GCKdV equations by the
standard Painlevé analysis, and find that the considered
system has a nonprincipal but maximal expansion fam-
ily. In Section 3, we give the corresponding arbitrary
function for the negative integer k = —2 by using the
perturbative Painlevé method, i. e., the remaining prob-
lem of the preceding section is settled. By applying
some different expansion methods, several exact solu-
tions for the GCKdV equations are given in Section 4.
And the last section contains a short summary.

2. Standard and Invariant Painlevé Analysis for
GCKdV Equations

It is shown that the GCKdV system,

1
U — Zuxxx—3uux—3wx+6wxz 0,

1
Vt + EV)(XX"‘ SUVX - 0, (3)

1
WI+§W><><>(+3UW><:07

introduced by J. Satsuma and R. Hirota [8], is a special
case of the four-reduced Kadomtsev-Petviashvili (KP)
hierarchy. Using a bilinear transformation method, it
has been studied by many authors [8, 9], who also have
shown that the soliton solutions can be derived from
those of the KP equation. According to the standard
WTC method, if the system is Painlevé integrable, then
all the possible solutions of the system can be repre-
sented as

u=Y wf e v=3 wfP w=3y wk,
k=0 k=0 k=0
4

with sufficiently many arbitrary functions uy, vk, and
W in addition to f, where f = f(x,t), ux = ux(x,t),
Vk = Vk(X, 1), and wi, = Wi (x,t) are analytical functions
in the neighborhood of f(x, t) =0, and «, B, and y
should be the negative integers. In other words, the so-
lutions of the GCKdV equations are single-valued on
an arbitrary singularity manifold f.

Substituting (4) into (3) and using a leading-order
analysis, it is found that the GCKdV equations pos-
sess two expansion families. The first one, the so-called
principal family, has resonances k= -1, 0, 0, 1, 1, 4,
5,5, 6, with oo = —2, B = y = —1. The usual Painlevé

expansion gives a local representation of the general
solution.

While for the second expansion branch, the leading-
order analysis uniquely gives

o= ﬁ = ’}/: —27
U= 212, vo = f2, ©)

and wp is an arbitrary function. Collecting terms con-
taining uy, Vg, and wy, the recursion relations for uy, v,
and wy are found to be

—%ff(k—4)(k2 — 5k — 18)uk+ 613 (k— 4)v

(6)
:Fl(Uk,]_, Vk—1, Wk-1, .., Wo, ft; fX7 fXX7 )7
1
_af3 L33 L2
6foux+ 2fx(k3 9k? + 14Kk)vi "
:Fz(Uk,]_, Vk—1, Wk-1, .., Wo, ft7 fX7 fXX7 )7
1
Bwou+ 5 3 (K> — 9K + 14k)wy ®)

= F3(Uk_1, Vk—17 Wk—l7 eeey W07 f'[7 fX7 fXX7 )7
fork=0,1, 2, ....

From (6) —(8), putting to zero the coefficient deter-
minant of uy, vk, Wk, we find that the resonances oc-

cur at
k=-2,-1,0,2, 3,4,6,7,8. 9)

The resonance for k = —1, corresponds to the arbi-
trary singularity manifold (f = 0). If the GCKdV sys-
tem is Painlevé integrable, the resonance conditions for
k=-2,0,2,3,4,6,7, 8 must be identically satisfied
such that the other eight arbitrary functions among the
Uk, Vk, Wk can be introduced into the general expan-
sions (4).

The whole Painlevé analysis of PDEs is shown to be
invariant [4] under an arbitrary homographic transfor-
mation of the singularity manifold f. The best expan-
sion function is y = (fx/f — fx/2fx) 1. Considering
the complexity of the GCKdV equations, we simply
perform the invariant Painlevé analysis in the gauge
S =0, which will greatly shorten the expressions for
the coefficients of the expansion. So the Riccati sys-
tem [4] satisfied by the function y automatically be-
comes

1
xx=1, xt=—C+Cy — zcxxlza

with C = —f;/fx, and the meanings of S and C
are explained clearly in [4]. Automatically the cross-
derivative condition on the Riccati system is Cyx = 0.
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Then applying the invariant analysis for the GCKdV equations with help of the software Maple, we find

1 2 1
k=0:u=-2,vg=1. k=1:u;=0,vi=0,w; =—Wpx. k=2: u2:§C, v2:—§C+§W0.
1 1 1 1 1
k=3:v3=—-U3+ Cx WOx, W3 = (U3+§CX)W0+6Wot+§W0xxx+ EWOXC_WZX'
1 1 1
k=4:V4=——U4——Cxx+—U3x+—wO>o<,

2 12 2 4

Wy = (U3 + %CX)WOX + (%st - %U4 + %Cxx)Wo — 7 Woxoox — %WOXI - %WO)(XC""‘ %W2xx~
k=5:us= (_%Cx‘i‘%WOX_ ﬁus)C—éCH-%WOt — Ugx— %U3xx7
VSZ(%CX—F %U3_%WOX)C_%WOXXX+%U4X_62_3Q_%
[(— 325W0x+ 8 Us—l—;ﬁ5 )C+%U4x+ 34T5Q_325W ]Wo—i—(; 4—%Cxx

Wot ,
W5 =

lu W +(1w +lw )C+lw lw +3w +1w 1uw
23x 0x 15 2X 20 0XXX 15 2t — 62xxx 40 0300X0KX 20 0xxt 23O><x~

13 1 1 13 1
(ﬁcx 21W0x u3)Cx + ( U3x + 252CXX - ZWOXX)C
5

1 1 , 1 1
UG——USI__U3+EU3XXX 21W0xt+48 0xxxx+252C
1 44 1

12 4
1
Cx — —Us— %WOX)WO + mWOXXX - ﬁWOt - EWOXC - EWZX]CX

+1(- 1W +1u+1C)C L+ —u L - oLt 1uz]w
70 Wos F gg Ut T35 Cm)C = SUe + 75 Usox— 77Ut = 155500 = 75 Wou — 7 Us|Wo

71 1 1 1 1 1 1,
+( 168WOXC+6W0XXX 24W0t)u3+(£—1u3x+ ﬂcxx_ ZU4+ﬁC )WOXX
2 2 1 1 1 1 1 1
35W0XC+ 35W0t + 840Ct - §u4X)W0X+ (36W0xt + Tan 180 Woxooox — 15W2><x)C - EW2><t
1 1 7
+ 5 Woox + 55 7 Wott — %WOXXXXXX + mWOXXXI-

24
11 1 1 13 59 1 1
Cix — Usx — Ug)U3 + (ﬁu3xx = 14 Woox — EU4X)C+ (21U3x+ 126CXX — g 7W0xx)Cx

—u +£u —iw —iu —iwC +Eu —iu +LC
6X 24 3XXXX 14 Oxxt 12 4t 14 0xxx 34xxx 12 3xt 504 XXt 5

1 1 23 2 1
[(—ggWox + 25Cx)C + 7 Q— WOt]WO‘F(—ﬁCxx-F Usx — @C +5Ua)us
10 2 l 41 1 3 2 2
+ ( 189Cx+ 63WOX)C + (_ﬂu4x 168 u3xx+ %W2x+ %WOXXX'F @W()t - @C{)C

67 109 1 5 1 1 3 11
+ (_EUZSX_ ﬁcxx‘F EU4 + EWOXX>CX+ %WZt - %WOXXXXX—F 70 Woxxt — 1008Cxxt

k=6:vs=

2

Wo = [( 175

+(

13
k=7: U7Z(E

V7 =

1 1 5
Ugt + = Upx — =Uaxx + == WoxCux + =5 U

T gt T Ux g 84 24 3¢~ g lawonc
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The functions wg, Wy, Us, Uy, Ug, and w7, not occurring
in the resonances conditions, are arbitrary functions for
j =0, ... 7. For resonance k = 8, ug is another arbitrary
function, while vg and wg are functions of C, wg, Wy,
Us, Us, Ug, Wy, Ug, and their different-order derivatives.
Because of the complexity, here we won’t give out the
complete expressions of vg and wg.

Based on the previous results, it is obvious that ex-
cept f only seven other arbitrary functions are found,
which also means that using the singular manifold
method fails to find out an arbitrary coefficient for res-
onance k = —2. In other words, the general Painlevé
expansion (4) only represents a particular solution.

Observing the characters of the resonances (9), we
get that the considered GCKdV system has a maximal
but nonprincipal family. In order to solve this problem,
in the next section we use the perturbative Painlevé
analysis [7] to find an arbitrary function for the res-
onance k = —2, which extends the particular solution
(4) into a general one.

3. Perturbative Painlevé Analysis for
GCKdV Equations

In [7], R. Conte, A. P. Fordy and A. Picking have
further improved the Painlevé test such that negative
indices can be treated. In this section, we seek a Lau-
rent expansion for a solution near the solution obtained
by the standard Painlevé method in Section 2. We do
this by considering a so-called perturbative expansion.
For a nonprincipal but maximal Painlevé family, the
perturbation extends the particular solution into a rep-
resentation of the general solution.

Let us denote the Painlevé expansion (4) as (u(©,
V(9 w(©)), and look for a nearby solution formally rep-
resented by an infinite perturbative series in a small
parameter £ not occurring in the equations itself

u=Y e v=3Y eV w=Y "w". (10)
n=0 n=0 n=0

At zeroth order, the expansion depends on the eight
arbitrary functions (f, Wé()), ng, ugm, uf), uéo), W§O>,
uéo)). From the invariant Panilevé analysis, the trunca-
tion at the constant level is

2 1
©__< .,
u o +3C+0(f),
1 1 o 2

(0) (0)
W, W,
w = =5 — 220w 4 O(f). (1)
At first order, we consider the assumption
u=u9 4 eu® v=vO 1 e
w=wO + ew?,
U 1 V. 1. (129
1) Y1 1) V1
U( >—§+O(§),V( ) ﬁ O(ﬁ),
W 1
1 i

Substituting ansatz (12) into the left hand side of
GCKadV equations (3), selecting terms containing &,
and then putting to zero the coefficients of 5, i.e.,
the lowest-order terms of the expansion variable f, we
obtain

15U, + 30V, =0, (13)

—6U; — 12V, =0, (14)

—12W; — 6Usw) = 0. (15)
Solving the equations (13) - (15), we get

Vi = —%UL W = _%UIW(()())y (16)

and U is an arbitrary function, which turns up as
the ninth arbitrary function from the resonances for
k=-2.

Therefore all of the resonance conditions with nine
arbitrary functions are identically satisfied, which si-
multaneously means that the particular solution has al-
ready been extended into a representation of the gen-
eral solution by the perturbative Painlevé approach.

4. Exact Solutionsfor GCKdV Equations

In this section according to the results of the previ-
ous Painlevé studies, we investigate several new types
of exact solutions for the GCKdV equations. First, we
use the standard truncation of the WTC expansion to
find some exact solutions of the GCKdV system.

4.1. Sandard Truncation Expansion

The standard truncation form of the WTC Painlevé
expansion reads

U u V( V
U= o+ 4 lp, V= L vy,
27 27
et ey, 0
_f2 f 2,



L.-J. Ye and J. Lin - Painlevé Properties and Exact Solutions of the Generalized Coupled KdV Equations 317

which evidently is a Backlund transformation if {us,
Vo, Wp } is selected as a known solution of the GCKdV
equations (3). For simplicity, we fix the seed solution
as

U =V=w,=0. (18)

Substituting (17) with (18) into (3) and putting all the
coefficients of the different powers of f to zero, we
have

2 2
Up = —2f¢, vo = T, Uy = 2fx, vi = — i,
frcWo — fxWox
=7z
X

and wy is an arbitrary function. A new soliton solution
can be obtained by choosing proper expressions of the
expansion variable f and the arbitrary function wg.

For f =1+ e®+o) and wy = afy, the solution
is u= ZkZsech?[(kx+ wt)/2], v = — tk?sech?[(kx +
ot)/2], w = 2Kk%sech?[(kx + wt)/2]. The substitution
of the above solution in (3) gives that a = — %kz, and
w=—3K.

4.2. Periodic Jacobi Elliptic Function Expansion

Recently Liu et al. [10] used three Jacobi elliptic
functions (sn(&), cn(&), and dn(&)) to construct exact
periodic solutions of some nonlinear evolution equa-
tions. The expansion method has been further devel-
oped into extended ones and also widely applied by
Yan [11], Fan [12], Ye [13], etc. Two types of peri-
odic wave solutions with Jacobi elliptic function sn(&)
for the considered GCKdV system has been given by
Fan [14] in the form

p . q .
u(g) =X asn' (&), v(§) = Y bisn'(&),
n - (19)
w(E) = _Zocisn'(é%

where £ = ax— wt, a;, bj, ¢, o, and w are constants
to be determined later. The parameters p, g, and mcan
be determined by the homogeneous balancing method.

In a similar way, we can obtain periodic wave so-

lutions for the GCKdV equations by taking the expan-

sion functions as cn(&), dn(&), and 32((?)

(i) For the Jacobi elliptic function cn(&), we obtain

_ o+203(1-2k?)

2122
30 +20°ken (),

ug

v1 = by £ a®k?en? (&), (20)

Wi = Co+ %akz[a3(2k2 —1)— 2w+ 3bgoen? (&),

with o, o, by, ¢y being arbitrary constants. Here we
use k to denote the elliptic modulus parameter (0 <
k<1),and

o*k2(1 — 2K?) + 212
( 4a2k2) 1 +a2k20n2(ig')’

Vo = bg + blcn(é), W, = Cp +2b0b1cn(§),

= (21)

4201912 2
where & = ox — %t, a, Co, by # 0 and

by £ 0 are arbitrary consltxants.
(ii) Taking dn(&) as the expansion variable, we find

~ o+203K—-2)

2412
Uy = 3a +20€ dn (5)7
v = by + o?dn® (&), (22)
Wi =Co+ %a[as(Z— k?) 4 3bgor — 200]dn? (&),
with o, o, by, ¢ being arbitrary constants, and
UZ—T‘FO‘ dn“(&), 23)
V2 =g +brdn(&), wo = co + 2bpbydn (&),
where & = ax— Wt, and all these parameters
possess the same definition as in the solution (21).
(iii) And for %‘?) we have the solutions
sn(§)
Up = ag+ 202k (1 — K2 ,
1= o 208 e
2
Vi — b, 21201 — k)" (5)7
P BT e e 24

wy =y — 20k (1 — K2)
sn?(§)
dn®(&)’

with & = ax — a[3ag + 202 (2k? — 2)]t, ag, bo, ¢y and
o being arbitrary constants, and

- (202K — 0 + 2ag + by)

42 4_ a2 2 2
0k (14-2K*—3k?) +2b7 +a2k2(1—k2)sn (€)

T (k) dn?(&)’
V) = bo+b1%, W, = Co+2bobl%; (25)
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4 K2 (142K —3K?) +-6b2
where & = ox— & (o:lzz(l—kz) )14 6, o, by # 0

and by # 0 are arbitrary constants.

Since dn(&) — sech(&), and sn(&), cn(§) —
tanh(&) as k — 1, the periodic solutions (20) - (25) ex-
actly converge to soliton solutions.

(iv) Actually, the summation exponent i of the ex-
pansion (19) can range from —p — p, —q — @, and
—m— m, i. e. the expansion can be rewritten as

m .
}5 Cio'.
i=—m
(26)
The following is a simple proof of the expansion
(26) by randomly choosing ¢ as dn(£). The parame-
ters p, g, and mcan be determined by the same method
as in the previous section. Thus the system admits the
following ansatz:

p . q .
@)=Y ap' vie)= Y bio', w(g) =

i=—p i=—q

=20 adh(e) 2 () g+ ey
W o utn(§) +cad(§) + 2+ oS

(@7)
Substituting (27) into (3) and using the software
Maple, we obtain three periodic wave solutions

L 20N 0tk
o dznZ(é)z’Vz1 2 - () 7(28)
W =Co+2a (1—k%)[a?(k® —2) = by — 2ay] .

' an’(€) /

b — at(3k? —2 -k +2bF  o?(1-K)

IO ) (29)
:[)%__Ei_ W :4b4_gﬁﬁﬂ.

T ) M T ne)

2002(1—K?
U3=%€)>+ao+2a2dn2(§),

_iaz(l—kz) 2.2
V3 = e + by + a*dn®(§), 30)
e 2021~ K)o (K2 — 2) by — 2a]

T dn?(&)

+ o+ 202[a® (K? — 2) — 289 = bp]dn? (&),
where ag, Cp, b # 0, and by £ 0 are arbitrary constants.

6 6

8
Fig. 1. Plot of the periodic Jacobi elliptic solution w, (23),
withoe =1 by =1 k=0.8.

-10 -5 5 x  \0
-2

-4
-6
-8

Fig. 2. Plot of the periodic solution v, (25) att = 2, for m=
0.8,0=1,bg=0,and b; = 1.

Taking dn(&) as the expansion variable, the solution
Uy (23) is plotted in Fig. 1 by choosing specific con-
venient values of the arbitrary constants «, by and the
modulus parameter m. It is evidently shown in Fig. 1
that u, is really a periodic solution involving time t.
And the solution v, (25) is plotted in Figure 2. From
the picture we can find that v, (25) is a periodic func-
tion.

4.3. Extended Truncation Expansion

Because the singularity manifold in the usual
Painlevé analysis is arbitrary, one may expand a field
in many different forms. Starting from some different
expansions, one may take different truncation proce-
dures to get additional solutions. In [6], S.Y. Lou has
introduced a simple new expansion for many known
integrable and nonintegrable models. We look for the
solutions of the form

a:
u= %+Tl+az+a3f+a4f27
v—@ ﬁ+b2+b3f+b4f2, (31)

S f2f
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hg h
W= f—2+Tl+h2+h3f +hy f2,
where a;, bj, hj are some arbitrary undetermined con-
stants, and the expansion variable f(x,t) satisfies the
Riccati system

fy=Co+Cif+Cof? fi=go+01f +gf2. (32)

The cross-derivative condition on (32) is

C
902@,91=%~

33
o o (33)

__ 24b5(8g2Ca+C5C5 — 6b3) —162C5 (492 +CiCp) —C1C) N C1(8C20p +C5c3—12b3) N CoG2—213

Based on the substitution of (33) into (32), the expres-
sion of function f can be easily obtained

4cycy — C2 tanh(é 4cycy — C3) — 1
\/ 1 34/ 1 N

2¢c

with € = x+ g—gt, andcp #0, g2 #0, ¢; # 0, ¢ being
arbitrary constants.

Substituting the solution ansatz (31) together with
the Riccati system (32) and its relevant condition (33)
into the GCKdV equations (3), we get four new sets of
solutions:

Uy —Clcgf—C%fz,
64c5 2 8c3 f c
b3(12b§ — 89202 — C%C%)
Vi = bs f 35
' 8cAf bt (35)
16¢4 [b3(16,C, + 2¢3¢3 — 15b3) — goC3 (49, + C3¢2)] €1(802C; + C3¢5 — 2003)
wy = = +hp+ f,
64cy f 8¢y
with bz # 0 and h, being arbitrary constants.
2 4 2
uz__g_%_c%@@%flﬁ)-l— bS—Clczf—Céfz, szt::a—(;o-l-bz-l-be,
2 2 36
_ Co[Zbgbng — Cl(CgCO + b%)] [Zbgbng — Cl(CgCO + b%)] (36)
Wy = +hy + f,
C%f Co
with by #£ 0, ¢y # 0, by and hy being arbitrary constants.
o g 9, 2 o ¢
= oap of g aef-ellh Ve=tipnEany thEach -
cl(£by—cf)  ci(xb—ci) 2
= hy+2 +by, —cf)f
20% f2 C f + 2 + ClC2( b2 Cl) )
where b, and h; are arbitrary constants.
__d ¢ 9 2¢2 .9 2
U4__4C%—f2_m_§c§_201(:2f_202f 5 V4—im+b2i01czfiéf 3 (38)
3 (+hy — ¢
Wy = M +hy +2¢16p(£by — C%)f + 2C%(:|:b2 — C%) f2,

where b, and h; are arbitrary constants. Simultaneously, all the other parameters a;, b;, and h;, not arising in the

solution forms (35) —(38), are taken as zero.
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5. Summary

In this paper, the standard and the perturbative
Painlevé analysis are used to study the generalized cou-
pled Korteweg-de Vries (GCKdV) equations. The ex-
pansion branch at the resonance k = —2 is discussed,
which obviously shows that the GCKdV system is
Painlevé integrable and that one obtains a new Béck-
lund transformation different from that of the branch
(—1). Using this new Bdcklund transformation, we de-
rive a new soliton solution of the system. By the use
of the Jacobi elliptic functions expansion method, sev-
eral types of periodic wave solutions are obtained.
And in the limiting cases for the modulus parame-
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ter k — 1, they exactly converge to soliton solutions.
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